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1. INTRODUCI’1ON

“l’he usefulness of finite element modeling follows from the ability to accurately simulate the
geometry and three-dimensional fields on the scale of a fraction of a wavelength. ~’o make this
modeling practical for engineering design, it is necessary to integrate the stages of geometry
modeling and mesh generation, numerical solution and display of fields. “l’he stages of geometry
modeling, mesh generation, and field display are commonly completed using commercially
available software packages. Algorithms for the numerical solution of the fields need to be written
for the specific class of problems considered. Interior problems, i.e. simulating fields in
waveguides and cavities, have been successfully solved using finite element methods. Exterior
problems, i.e. simulating fields scattered or radiated from structures, are more, difficult to model
because of the need to numerically truncate the finite element mesh. ~’o practically compute a
solution to exterior problems, the domain must be truncated at some finite surface where the
Sommerfeld  radiation condition is enforced, either approximately or exactly, Approximate
methods attempt to truncate the mesh using only local field information at each grid point, whereas
exact methods are global needing information from the entire mesh boundary. This paper outlines
a method that couples a three-dimcnsicmal  finite element solution interior to the bouncling surface
with an efficient integral equation solution that exactly enforces the Sommerfeld radiation condition
[1]. Specifically, edge based, vector finite elements are used to model fields in the interior region,

11, TIIE IN”IXRIOR FINI’I’H EI.EMENT  MODEL

‘1’he scatterer and surrounding space are broken into two regions--an interior part containing
the scatterer and freespacc  region out to a defined surface, and the exterior homogeneous parl
(l~igure  1). To efficiently model fields in the exterior region, the surface bounding the interior is
prescribed to be a body of revolution (BOR).  In this interior region, the weak form of the wave
equation is used to model the geometry and fields
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11 is the magnetic field (the H-equation is used in this paper; a dual E-equation can also be
written), ‘1’ is a testing function, and F. x fi is the tangential component of l; on the BOR surface S.
A finite element representation is used to model the fields within this volume. An ensemble of
elements filling the interior region, excluding any perfect conducting objects, is created using a
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Figure 1. Geometry of scatterer showing interior and exterior regions.

mesh generator. The elements should accurately represent the magnetic field, the geometry of the
scatterer, and the bounding 130R surface, Since the scatterer is not a BOR in general, the finite
element mesh will extend out from the scatterer to the 130R surface, For an accurate model of the
fields, tetrahedral, vector edge elements are used to model 11

where

Wnln(r-) = anl(r)van(r)  – a~(r)vanl(~) (2a)

and A(r)  are the tetrahedral shape functions. Test ing functions are also chosen to be the functions
W(r).

IJ1. AN EFFJCIENT EXTERIOR INTEGRA1. EQUATION MODEI.

In the IIOR configuration, a cylindrical coordinate system (p, $ z) is selected for the exterior
region, and orthogonal surface coordinates ($, Z) are used on the boundary itself, where @ is the
azimuthal angle variable, while ? is the contour length variable along the BOR generating curve.

in the formulation of the integral equation, equivalent electric and magnetic surface currents
are defined on the boundary, namely, J = n x li, M = E x n. These currents produce scattered
fields in the exterior region. The sum of scattered and incident fields results in the total field
everywhere outside the boundary surface. On the boundary itself, this sum is equal to half the total
field. The scattered field in the exterior region is obtained from the tangential currents via an
integral over the boundary using a specific free-space Green’s function kernel that exploits the
rotational symmetry. The electric field integral equation (EFJE) and the magnetic field integral
equation (MFIE) are linearly combined resulting in the combined field integral equation (CFIll),
This formulation is used to avoid difficulties caused by non-uniqueness in the FV’IE and lIFIE
formulation at interior resonant frequencies. The CFJE is given as

(3)
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Operators ZM and ZJ in (3) are integro-differential  operators involving the free space  Green’s
function and Vi is related to the incident field [2].

IV, COIJPI.lNG TII13 TWO REPRESENTATIONS

Hquations for fields in the interior and exterior regions have been specified. It is only
necessary to enforce boundary conditions to create a unique solution to Maxwell’s equations.
Tangential components of H and II are enforced to be continuos at the BOR surface by the
following two equations

j7’*(llxi-M)d,Y=O (4)
s

jfix U*(iix IhJ)ds=O (5)
s

where the functions T and U are used as testing functions to enforce continuity in a weak sense.
‘l’he first equation (enforcement on R) is substituted into the surface integral of(1). The seconcl
condition (on 11) is explicity enforced as a separate equation. Together (1), (3) and (5) make up
the linear system describing the fields in both regions. It is noted that the Sommerfeld radiation
condition is implicitly enforced in (3), and any material boundary conditions are enforced in the
finite elcnmt  representation in ( 1 ).

The surface integral in (1) and the first component of the integral in (5) are termed the
coupling integrals since they couple interior and exterior field representations. Because the 130R
surface is used to separate regions, the standard Fourier series formalism can be applied to express
the variation of the unknown surface currents. Additionally, sub-domain basis functions are used
to describe current variation along the BOR generating curve. The integral equation basis functions
have the form [2]

~(?)  ~jnqi  ~lJa(t, #)) = —
p( t )

(6)

where 7’ is a triangle function and a is either t or @ However, in the interior volume the finite
element representation is different, being given by the ensemble of tetrahedral elements; in
particular, the union of the boundary finite elements external facets will define the boundary
surface of the finite element mesh. It is noted that this surface will generally not coincide with the
surface of revolution chosen for the integral equation portion of the problem and only in the limit
of fine meshing and generator description will the surfaces come into contact with each other. ~’his
difficulty could be removed by introducing isoparametric elements to model the BOR surface S.
We are planning to investigate this approach in the future.

V.  NUMILRICAI, RESUI.TS

l’he resultant system of equations is solved, giving J, M and 11. Because the system is
partitioned, different methods of solution can be used. The finite element block of the matrix
system is highly sparse, and the other blocks are banded, The different solution methods will be
outlined in a separate paper.



One example calculation is scattering from a homogeneous dielectric sphere of relative
pcrnlattivity2.  Theradiusiska= 1.05, Plottdirl FigLlre  2arettle  Mll~ourier  collllJorlents oft}le
surface current as calculated from the above formulation, and CICERO IIOR scattering code [2].
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Figure 2. Current on surface of sphere. “l’he *1 modal current
should be equal, and identical to the CICERO result. “l’he O modal
current should be identically zero,
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